Relationships of the ¹⁵N Nuclear Magnetic Resonance Chemical Shift and the ¹⁵N–¹H Spin Coupling Constant to the Infrared Stretching Frequency of the Amino Group in Saturated Primary Amines and Anilines

Mamoru Takasuka* and Yoshihiro Terui

Shionogi Research Laboratories, Shionogi and Co. Ltd., Fukushima-ku, Osaka 553, Japan

The amino group stretching frequency (v_{NH}) and the ¹⁵N chemical shift $(\delta^{15}N)$ were measured for saturated primary amines. A good linear relationship was found between them, with the slope being the opposite of that found in substituted anilines. A linear relationship was also found for substituted anilines between v_{NH} and the ¹⁵N–¹H spin coupling constant $({}^{1}J_{+N,+H})$. CNDO/2 calculations were done for representative molecules to obtain the NH stretching frequency, the local paramagnetic term of ¹⁵N, and the nitrogen 2*s*-hydrogen 1*s* bond order, on the basis of which the characteristic behaviour found for the i.r. and n.m.r. parameters was interpreted.

The ¹⁵N chemical shift of the amino group in saturated primary amines (RNH₂) gives very useful information on the structure of the substituent.^{1.2} It has been reported ² that the substitution of a methyl group for a hydrogen on the α -carbon (α -H) of R-NH₂ changes the ¹⁵N chemical shift to lower magnetic field, whereas, in the case of the substitution of β -H, the shift is to higher magnetic field. This behaviour is similar to that of the ¹⁷O chemical shift (δ^{17} O) found in saturated alcohols (ROH).³ Previously we have reported⁴ that a linear relationship exists between the OH stretching frequency (v_{OH}) and $\delta^{17}O$ of ROH. Our continued interest in studying the relationship between the i.r. stretching frequency and the n.m.r. chemical shift led us to measure the NH stretching frequency (v_{NH}) and the ¹⁵N chemical shift ($\delta^{15}N$) of the amino group in RNH₂. The v_{NH} value shifts to lower wavenumber when the a-H is substituted by a methyl group, but to a higher one in the case of substitution for β -H.⁵ This behaviour is like that of v_{OH} found in ROH.⁶ Therefore, regression analysis was done for the relationship between ν_{NH} and $\delta^{15}N$ observed for nine saturated primary amines. To explain the experimental result theoretically, we have performed the CNDO/2 calculation ⁷ for a series of methyl-substituted methylamines and obtained the approximate values of v_{NH} and the ¹⁵N local paramagnetic term.⁸ In order to compare the important factors influencing the NH stretching frequency and the local paramagnetic term in RNH₂ with those in amino compounds having the π -electron system, we also studied the relationships among the n.m.r. parameters $(\delta^{15}N \text{ and } {}^{1}J_{{}^{13}N,{}^{1}H})$ and the NH stretching frequency in paraand meta-substituted anilines.

Experimental

All the compounds used were available commercially. I.r. spectra were recorded on a JASCO A-702 i.r. spectrophotometer calibrated for the rotational bands of ammonia gas. Samples were dissolved in chloroform at a concentration of *ca*. 0.1 mol dm⁻³ (cell length 0.5 cm). Nitrogen-15 n.m.r. spectra were recorded with a Varian XL-200 Fourier transform spectrometer. Calculations were performed on a FACOM M-150F computer.

Results and Discussion

NH Stretching Frequency-¹⁵N Chemical Shift Relationship.—The v_{NH} and the $\delta^{15}N$ values observed for the saturated primary amines are listed in Table 1, together with the $\delta^{15}N$ values reported for the corresponding amines.^{2a} Because the primary amines have an antisymmetric stretching frequency (v_{NH}^{as}) and a symmetric one (v_{NH}^{s}), the values estimated using equation (1) were approximately adopted as the v_{NH} value of

$$v_{\rm NH} = \{ [(v_{\rm NH}^{\rm as})^2 + (v_{\rm NH}^{\rm s})^2]/2 \}^{\frac{1}{2}}$$
(1)

primary amines.⁹ The values of v_{NH} and $\delta^{15}N$ are shifted to lower wavenumber and lower magnetic field, respectively, by the β -methyl effect (*i.e.*, the effect of substitution of the methyl group for the α -H) on going from CH₃NH₂ (1) through CH₃CH₂NH₂ (5) and (CH₃)₂CHNH₂ (7) to (CH₃)₃CNH₂ (9), but to higher values with an increasing γ -effect (*i.e.*, the effect of substitution for the β -H) as seen on going from (3) to (2).

No.	Compound	$v_{\rm NH}^{\rm as}/cm^{-1}$	$v_{\rm NH}^{\rm s}/cm^{-1}$	v _{NH} /cm ^{−1 a}	δ ¹⁵ N (p.p.m.) Neat ^b (CH ₃ OH) ^c
(1)	CH ₃ NH ₂	3 394	3 328	3 361	6.3^{d} (2.9)
(2)	(CH ₃) ₂ CHCH ₂ NH ₂	3 390	3 326	3 358	17.5 (17.5)
(3)	$CH_3(CH_2)_2NH_2$	3 386	3 318	3 352	20.9 (20.6)
(4)	$CH_3(CH_2)_3NH_2$	3 385	3 317	3 351	23.5 (20.8)
(5)	CH ₃ CH ₂ NH ₂	3 384	3 317	3 350	27.7 ^d (24.8)
(6)	CH ₃ CH ₂ (CH ₃)CHNH ₂	3 378	3 310	3 344	39.4 (38.0)
(7)	(CH ₃) ₂ CHNH ₂	3 375	3 308	3 342	44.4 (42.1)
(8)	$cyclo-C_6H_{11}NH_2$	3 372	3 307	3 340	41.2 (39.8)
(9)	(CH ₃) ₃ CNH ₂	3 363	3 300	3 332	59.6 (55.9)

Table 1. Amino stretching frequencies in chloroform and ¹⁵N chemical shifts.

^a $v_{NH} = \{[(v_{NH}^{as})^2 + (v_{NH}^{as})^2]/2\}^{\frac{1}{2}}$. ^b Reference signal; external $\{HCONH_2 - (CD_3)_2SO (vol/mol 1:1)\}$. δ value; calculated by assuming δ (ref.) = 112.2 p.p.m. ^c Ref. 2a; measured with respect to 1M-HNO₃, conversion constant = 374.0 p.p.m., in CH₃OH. ^d Compounds (1) and (5) are 40 and 70% H₂O solutions, respectively.

Table 2. Bond lengths (Å), angles $(^{\circ})$,¹⁰ and co-ordinates^{*a*} of methyl-substituted methylamines

R _{C-C} R _{C-N} R _{N-H} R _{C-H}	1.54 1.47 1.01 1.09	CÑH HÑH CĈN CĈH θι	112.2 105.8 $= C\hat{C}C$ $= H\hat{C}H$ $= \theta_2$	} 10	9.47
H(2)) R ²		R ¹	R ²	R ³
θ² 🍾	\prec	(1)	н	н	н
R [×] * (,N)	(5a)	СН₃	н	н
61 *	\prec	(5b)	н	н	CH_3
H(1)) [`] R ¹	(7 a)	СН₃	CH3	н
Z		(7 Ь)	CH_3	н	CH_3
ſ		(9)	CH_3	CH_3	CH_3
xL	>v				

"The geometry of the β -methyl group was assumed to be exactly staggered.

The plot of $\delta^{15}N$ against v_{NH} observed gives a good linear relationship which can be expressed as equation (2), where *n* is the number of data points and *r* the correlation coefficient. Equation (2) may prove useful for estimating the $\delta^{15}N$ value for

$$\delta^{15}N = -1.7601v_{NH} + 5923.5$$
(2)
(n = 9, r = 0.986)

 RNH_2 from the v_{NH} value which is much easier to observe than the $\delta^{15}N$ value. The relationship found is discussed below on the basis of the CNDO/2 calculations.⁷

CNDO/2 Calculations.—On the basis of available data ¹⁰ for analogous compounds, we adopted the geometries and coordinates of the model compounds (1), (5), (7), and (9) shown in Table 2. With compounds (5) and (7) which have two conformers, the NH stretching frequencies and the ¹⁵N local paramagnetic terms for both conformations (5a) and (5b) and (7a) and (7b) were calculated.

(a) NH Stretching frequency. The amino stretching bands are known to correspond virtually only to the NH₂ stretching modes. For example, the potential energy distributions of v_{NH}^{as} and v_{NH}^{s} in methylamine have been evaluated to be 100%, respectively, by normal co-ordinate analysis.¹¹ Therefore, the v_{NH} value obtained by equation (1) can be assumed to be approximately equal to a pure NH stretching frequency in the NH₂ group. Because the amine has two N–H bonds [NH(1) and NH(2)], which have environmental differences in conformations (5a) and (7b), both of the NH(1) and NH(2) stretching frequencies were calculated for (5a) and (7b).

Based on a harmonic oscillator model, the force constant (K) of the NH stretching band was calculated from the second derivative of change in total energy (E) with the variation in the NH bond length ($R_{\rm NH}$) near the optimum NH bond length ($R_{\rm NH}$). The assumption gave equation (3),^{7,12} where K =

$$E = Kq^2/2 \tag{3}$$

 $\partial^2 E/\partial q^2$ and $q = R_{\rm NH} - R_{\rm NH}$. The proton potential function in the direction of the NH axis was obtained by five-point calculations at 0.01 Å intervals of $R_{\rm NH}$ around the energy minimum, retaining another NH bond length at 1.07 Å because the $R_{\rm NH}$ value of an NH₂ group was calculated to be *ca.* 1.07 Å. The K value was calculated from the potential function and the NH stretching frequency ($v_{\rm NH}$) was obtained from the K value by the usual method.¹² The v_{NH} value thus calculated corresponds to the v_{NH} value given by equation (1).

The $R_{\rm NH}$, K, and $v_{\rm NH}$ values obtained from the CNDO/2 calculations are given in Table 3. Although the CNDO/2 calculations, in general, overestimate the values,^{4,7,13} the tendency was for the $v_{\rm NH}$ value to decrease as the $R_{\rm NH}$ value increased. The calculated $v_{\rm NH}$ values ran closely parallel to the experimental ones which shifted to lower wavenumbers with an increasing number of β -methyl groups, as for compounds (1), (5), (7), and (9).

(b) ¹⁵N Local paramagnetic term. Because the diamagnetic term is considered to be effectively constant for a nitrogen atom,¹⁴ the ¹⁵N chemical shift is assumed to be mainly governed by the local paramagnetic term (σ_p). According to Pople-Karplus theory,⁸ the *ii*-component of the local paramagnetic contribution of atom A bound to atom B is given by equation (4), where ΔE is the average electronic excitation

energy, $[(Q_{AA})_{ii} + \sum_{B \neq A} (Q_{AB})_{ii}]$ is the orbital term which is obtained from the charge density-bond order matrix, and $\langle r^{-3} \rangle_{2p}$ is the mean inverse cube radius for the nitrogen 2p orbitals. The $\langle br | ^3 \rangle_{2p}$ value was evaluated from equation (5). The Z_{2p} value of the nitrogen atom is given by equation (6)

$$< r^{3} >_{2p} = \frac{1}{24} (Z_{2p}/a_{0})^{3}$$
 (5)

$$Z_{2p} = 3.90 - 0.35 \left(P_{AA} - 5 \right) \tag{6}$$

in accord with Slater's rules,¹⁵ where P_{AA} is the charge density on the nitrogen atom. The values of $\langle r^{-3} \rangle_{2p}$ and $[(Q_{AA})_{ii}$ + $\sum_{B \neq A} (Q_{AB})_{ii}]$ obtained from the CNDO/2 calculation are

listed in Table 3. If those values are the main factors determining σ_p , the $\delta^{15}N$ values should shift to higher magnetic field on going from compound (1) through (5) and (7) to (9). But the $\delta^{15}N$ values shown in Table 1 exhibit a shift to lower magnetic field. The result clearly suggests that σ_p is not governed primarily by $\langle r \rangle_{2p}$ and $[(Q_{AA})_{ii} + \sum_{\substack{B \notin A}} (Q_{AB})_{ii}]$ in this case.

The downfield shifts of δ^{15} N due to β -methyl groups found for compounds (1), (5), (7), and (9) are in parallel with the decrease in the ionization potentials.¹⁶ Therefore, it is assumed that, as an approximation, we can substitute the ionization potential for ΔE in equation (4), as assumed in the study on the δ^{17} O value of ROH.⁴ Applying Koopmans' theorem,¹⁷ the ΔE value is assumed to be the negative of the highest occupied orbital energy (ε_{HOMO}). The calculated σ_p values are given in Table 3. The increase in the absolute value of σ_p due to the β -methyl effect in the model compounds is consistent with the increase in the downfield shift of δ^{15} N. This result indicates that σ_p is primarily governed by ΔE in this case.

Ebraheem and Webb¹⁸ have calculated the nitrogen nuclear screening constants using Pople's theory,¹⁹ within the CNDO/S framework;²⁰ the excitation energy $(E_k - E_j)$ is given by equation (7), where ε_k and ε_j are eigenvalues of the unperturbed

$$E_k - E_j = \varepsilon_k - \varepsilon_j - J_{jk} + 2K_{jk} \tag{7}$$

molecule, and J_{jk} and K_{jk} are the Coulomb and exchange integrals, respectively. They have reported ¹⁸ that this approach provides a satisfactory account of the ¹⁵N nuclear screening tensors of some simple molecules. Therefore, we also did the calculations

Table 3. Optimum NH	[bond lengths	s, NH stretching fi	requencies, ^a and ¹⁵ N	local paramagentic	terms ^b for methyl-su	bstituted methylami	nes by CNDO/	2 calcula	ıtion		
Compound	No.	$R_{ m NH^{e}}/ m \AA$	K/mdyn Å ⁻¹	v _{NH} /cm ⁻¹	P44	$r^{24} < r^{-3} > 2_p/$ cm ⁻³	€Homo∕a.u.	іі ($(Q_{AB})_{ii} + \Sigma(Q_{AB})_{ii}$ $\Sigma_{i\neq A}$	$(\sigma_{p}^{AA})_{ii}$ (p.p.m.)	$\sigma_p(p.p.m.)^c$ [$\sigma_p(p.p.m.)]^d$
CH ₃ NH ₂	(1)	1.0675	14.1914	5 061.1	5.2027	15.7856	-0.523 32	xx	1.875 64	-223.2	-246.2
								<i>vy</i> 	2.21197	-263.3	(-198.9)
CH ₃ CH ₂ NH ₂	(5a)	1.0679 °	14.1830°	5 059.6°	5.2080	15.7627	-0.513 25	77 XX	1.883 91	- 228.3	- 249.7
								yy	2.190 00	- 265.4	(-189.4)
								22	2.107 81	-255.4	
	(5b)	1.0677	14.1789	5 058.9	5.2126	15.7428	-0.50699	XX	1.888 31	-231.3	-251.6
								yy	2.206 08	-270.3	(-193.2)
								22	2.065 93	- 253.1	
(CH ₃) ₂ CHNH ₂	(7a)	1.0684	14.1708	5 057.4	5.2124	15.7436	-0.503 50	xx	1.890 46	-233.2	-253.3
								yy	2.171 37	-267.9	(-185.0)
								22	2.098 46	- 258.9	
	(1b)	1.0682 "	14.1718°	5 057.6°	5.2164	15.7264	-0.49739	xx	1.894 47	-236.3	- 255.4
								yy	2.186 02	-272.7	(-185.6)
								22	2.060 89	-257.1	
(CH ₃) ₃ CNH ₂	(6)	1.0687	14.1652	5 056.4	5.2197	15.7121	-0.48841	xx	1.899 58	-241.1	-259.1
								yy	2.168 82	-275.3	(-182.2)
								22	2.056 14	-261.0	
^a Calculated by apply $(\sigma_{p}^{AA})_{zz}$]. ^d Calculated	ing least-squa by the CNDC	rres quadratic fit D/S method (see te	using five points (s sxt). ^e Mean values fo	ce text). ^b σ _p was c or NH(1) and NH(2)	alculated using the in the amino group	bond length listed (see text).	in Table 2 (R	ин 1.01	Å). $^{c}\sigma_{p}=$	1/3[(σ _ρ ^{AA}) _{xx}	$+ (\sigma_p^{AA})_{yy} +$

Figure 1. Plots of ¹⁵N chemical shifts^{*a*} against NH stretching frequencies^{*b*} in *para*- and *meta*-substituted anilines.^{*c*} ^{*a*} Ref. 22; conversion factor = 380.4 p.p.m., in (CD₃)₂SO.^{*b*} Ref. 9; $v_{\text{NH}} = \{[(v_{\text{NH}}^{\text{as}})^2 + (v_{\text{NH}}^{\text{s}})^2]/2\}^{\frac{1}{2}}$, in CS₂. ^{*c*} Regression analysis gave the equation $\delta^{15}N = 0.3855 v_{\text{NH}} - 1263.7 (n = 14, r = 0.990)$

applying the CNDO/S method for a series of methylsubstituted methylamines and obtained values for σ_p (see σ_p values in parentheses in Table 3). However, the result differed from the experimental one. The CNDO/S calculation was not efficient enough to explain the β -methyl effect on σ_p of ¹⁵N in the compounds examined.

(c) Calculated $v_{NH} - \sigma_p$ relationship. We obtained equation (2) for the empirical relationship between the v_{NH} and the $\delta^{15}N$ values. Although the existence of a certain relationship between the v_{NH} and the $\delta^{15}N$ values can be expected, there had been no straightforward proof of the linearity of this relationship. A linear relationship (n = 6, r = 0.970) was also found between the calculated v_{NH} and σ_p values for the model compounds, thus providing theoretical support for the empirical relationship.

Comparison of $v_{\rm NH} - \delta^{15} \rm N$ Relationships Found in Saturated Primary Amines and Substituted Anilines.—A rough linear relationship (n = 10, r = 0.922) has been reported between $v_{\rm NH}$ and $\delta^{15} \rm N$ for para- and meta-substituted anilines (XC₆H₄NH₂) including p-nitroaniline.²¹ As shown in Figure 1, we obtained a good linear relationship (n = 14, r = 0.990) between $v_{\rm NH}$ and $\delta^{15} \rm N$ reported for XC₆H₄NH₂,^{9,22} excluding p-nitroaniline. Interestingly, the slope observed for XC₆H₄NH₂ was in just the opposite direction to that of RNH₂. It has been reported ^{5.9,23} that the amino stretching frequencies in RNH₂ and XC₆H₄NH₂ are proportional to Taft σ^* of R and the substituent constants of X, respectively, and that the shift to lower wavenumber occurs when R or X is an electron-donating substituent. With the substituent effects on the amino stretching frequencies, RNH₂ and XC₆H₄NH₂ resemble each other in appearance.

On the other hand, the $\delta^{15}N$ values in $XC_6H_4NH_2$ have been reported to shift to lower magnetic field upon introduction of an electron-withdrawing substituent in the phenyl group and to be proportional to the π -electron densities at the

Figure 2. Plots of ¹⁵N-¹H spin coupling constants^{*a*} against NH stretching frequencies^{*b*} in *para*- and *meta*-substituted anilines.^{*c*} ^{*a*} Ref. 22; in CDCl₃. ^{*b*} Ref. 9; $v_{NH} = \{[(v_{NH}^{as})^2 + (v_{NH}^{s})^2]/2\}^{\frac{1}{2}}$, in CS₂. ^cRegression analysis gave the equation ¹J_{15N,1H} = 0.2421 v_{NH} - 751.8 (*n* = 18, *r* = 0.967)

nitrogen atom of the amino group calculated by Hückel LCAO.²² If we accept that the $\delta^{15}N$ value is approximately governed by $(\sigma_p^{AA})_{ii}^{14}$ which is given by equation (4), the above fact indicates that the $\delta^{15}N$ value is primarily governed by the $< r^3 >_{2p}$ and/or the $[(Q_{AA})_{ii} + \sum (Q_{AB})_{ii}]$ terms in this case, as pointed out by Kato *et al.*²⁴ to explain the $\delta^{17}O$ behaviour in XC₆H₄OCH₃. In the case of RNH₂, the shift to lower magnetic field is caused by electron-donating substituents. These facts support the idea that the $\delta^{15}N$ value of RNH₂ is primarily governed by the ΔE term, as mentioned in the previous paragraph. Thus, we can understand the opposite slopes of the $v_{NH}-\delta^{15}N$ relationships found for RNH₂ and XC₆H₄NH₂.

As seen from Figure 1, the point for the *p*-nitroaniline greatly deviated from the line. The reason may be an abnormally strong 'through resonance interaction' between the NH₂ and NO₂ groups as in (A) by which not only the π -electron density but also the other terms controlling $\delta^{15}N$ are influenced to deviate to lower magnetic field. The through-resonance interaction promotes N–H bond polarization which suppresses the shift to higher wavenumber induced by the electron-withdrawal factor; this effect may also contribute to the deviation from the linear relationship. The important factors controlling the v_{NH} value are discussed in the next paragraph using the information obtained from the behaviour of the n.m.r. ¹⁵N–¹H spin coupling constants.

NH Stretching Frequency-¹⁵N-¹H Spin Coupling Constant Relationship in p- and m-Substituted Anilines.—For a series of

Figure 3. Plots of ${}^{15}N{}^{-1}H$ coupling constants against P_{2s1s} in YNH₂.^{*a*} Regression analysis gave the equation ${}^{1}J_{{}^{15}N{}^{-1}H} = 294.8 P_{2s1s}{}^{2} + 5.2$ (n = 12, r = 0.962).

anilines, $XC_6H_4NH_2$, a good linear relationship was found between v_{NH} and the ${}^{15}N{}^{-1}H$ spin coupling constant ${}^{22}({}^{1}J_{{}^{15}N{}^{-1}H})$ as shown in Figure 2. Theoretical²⁵ and experimental²⁶ proof exists that ${}^{1}J_{A,H}$ is linearly related to the (s_{0}°) character of the hybrid orbitals forming the A-H bond. In order to interpret the $v_{\rm NH}^{-1}J_{13}^{13}N_{\rm H}$ relationship obtained, we inspected the available geometries for the compounds having an amino group (YNH_2) and did the CNDO/2 calculations. Table 4 lists the values of θ and $P_{2s_1s_2}$ for the amino compounds, YNH₂, together with the available ${}^{1}J_{{}^{1}N,{}^{1}H}$ values, where θ is the out-of-plane angle of the N-Y bond from the HNH plane and P_{2s1s}^2 is the square of the bond order between the nitrogen 2s and the hydrogen 1s calculated by the CNDO/2 method on the basis of its geometry. The θ values of RNH₂ are nearly constant in the range 52.9-51.3° and are close to the 54.7° of sp^3 -hybridization, but those of XC₆H₄NH₂ vary greatly from 46.4° to 10.6° depending upon X and are intermediate between the 54.7° of sp^3 hybridization and the 0° of sp^2 . The ${}^{1}J_{{}^{13}N,{}^{1}H}$ values were plotted against the calculated $P_{2s_{1}s^{2}}$ values and a good linear relationship (Figure 3) was found. The plotted points for the reference compounds, ammonia or methylamine (sp^3) and formamide (sp^2) , are located at both terminals of the line, and the points for $XC_6H_4NH_2$ are located in between depending on the P_{2s1s}^2 value. This result indicates that in YNH₂, the ${}^1J_{{}^{15}N,{}^{1}H}$ value is proportional to the (s_{0}°) character of the NH bond. Accordingly, the $v_{\rm NH}^{-1}J_{13\rm N,1N}$ relationship suggests that the $v_{\rm NH}$ value in $\rm XC_6H_4NH_2$ is also governed primarily by the (s_0°) character of the NH bond.

Unfortunately, the ${}^{1}J_{{}^{15}N_{1}{}^{1}H}$ value for most of the saturated primary amines examined, which are liquid over a wide temperature range, was not observable even at low temperature because of the rapid proton exchange. However, the ${}^{1}J_{{}^{15}N_{1}{}^{1}H}$ values for those compounds, if observable without an influence of the proton exchange, are predicted not to differ much from

Table 4. Out-of-plane angle (θ) of N-Y bond from the HNH plane, the square of the bond order (P_{2s1s}^2) of the N-H bond calculated by the CNDO/2 method, and ¹⁵N-¹H spin coupling constant (${}^{1}J_{{}^{15}N,{}^{1}H}$) in YNH₂

Compound	θ(°)	$P_{2s_{1}s}^{2a}$	¹ <i>J</i> ¹ ⁵ N. ¹ H/Hz
NH ₃	53.8 ^b	0.205 73	61.2 <i>^p</i>
CH ₃ NH ₂	52.2 °	0.209 03	64.5 <i>°</i>
CH ₃ CH ₂ NH ₂	51.3 ^d	0.207 00"	(n.o.) ⁴
$(CH_3)_2CHNH_2$	52.9 ^e	0.218 40"	(n.o.) ⁴
CH ₃ NH ₃ ⁺	54.2 ^f	0.228 94	74.92 ^r
p-FC ₆ H ₄ NH ₂	46.4 <i>^g</i>	0.227 88	77.8″
C ₆ H ₅ NH ₂	37.5*	0.245 36	78.6″
m-FC ₆ H ₄ NH ₂	36.2 ⁱ	0.251 87°	80.1 <i>°</i>
m-ClC ₆ H ₄ NH ₄	34.6 ^j	0.252 42°	80.9 <i>1</i>
$p-O_2NC_6H_4NH_2$	10.6 ^k	0.284 80	86.4 <i>1</i>
O, H			
C-N	0'	0.275 29	87.2 ^s
CH ₃ H		0.282 26	88.5 ^s
Q H			
[™] C−N	0 *	0.286 35	88.0 <i>t</i>
н′ `н		0.294 63	92.0 <i>'</i>

"For the sake of simplicity, the bond lengths C⁻⁻⁻⁻C (1.395 Å), C--H (1.09 Å) and bond angles (120°) for the benzene ring were used. ^b K. Kuchitsu, J. P. Gullory, and L. S. Bartell, J. Chem. Phys., 1968, 49, 2488. ° T. Nishikawa, T. Itoh, and K. Shimoda, ibid., 1955, 23, 1735. ^d M. Tsuboi, K. Tamagake, A. Y. Hirakawa, J. Yamaguchi, H. Nakagawa, A. S. Manocha, E. C. Tuazon, and W. G. Fately, ibid., 1975, 63, 5177. ^e S. C. Mehrotra, L. L. Griffin, C. O. Britt, and J. E. Boggs, J. Mol. Spectrosc., 1977, 64, 244. J L. W. Reeves and A. S. Tracey, J. Am. Chem. Soc., 1974, 96, 1198. 9 A. Hastie, D. G. Lister, R. L. McNell, and J. K. Tyler, Chem. Commun., 1970, 108. h D. G. Lister and J. K. Tyler, J. Mol. Struct., 1974, 23, 253. G. Cazzoli, D. Damiani, and D. G. Lister, J. Chem. Soc., Faraday Trans. 2, 1973, 69, 119. J A. Nonat, A. Bouchy, and G. Roussy, J. Mol. Struct., 1983, 97, 83. * M. Colapietro, A. Domenicano, C. Marciante, and G. Portalone, Acta Crystallogr., 1981, A37, C199.¹ G. A. Jeffrey, J. R. Ruble, R. K. McMullan, D. J. DeFrees, J. S. Blinkley, and J. A. Pople, ibid., 1980, B36, 2292. " M. Kitano and K. Kichitsu, Bull. Chem. Soc. Jpn., 1974, 47, 67. "Mean value of P2515" calculated for amino group in trans- and gauche-forms." Mean value of P_{2s1s}² calculated for two N-H bonds in amino group. ^p M. Alei, Jr., A. E. Florin, W. M. Litchman, and J. F. O'Brien, J. Phys. Chem., 1971, 75, 932. 4 Not observed (see text). 7 T. Axenrod, P. S. Pregosin, M. J. Wieder, and G. W. A. Milne, J. Am. Chem. Soc., 1969, 91, 3681. 8 A. D. Marco and M. Llinás, Org. Magn. Reson., 1979, 12, 454. ' B. Sunners, L. H. Piette, and W. G. Schneider, Can. J. Chem., 1960, 38, 681.

that of methylamine, since small differences in the (s_{0}^{\prime}) character of those amines are indicated from the θ values. The important factor causing the considerable differences in the v_{NH} value of RNH₂ depending upon R is not simply assignable. Assuming that the v_{NH} values of RNH_2 are also influenced mainly by their (s%) character, the v_{NH} values with small differences should be observed for RNH₂. In spite of the small differences in the θ and the $P_{2s_1s}^2$ values, however, considerably large differences were observed for the v_{NH} values of RNH₂; compared with the v_{NH} value of methylamine, for example, those of ethylamine and isopropylamine shift to lower wavenumber by 11 and 19 cm⁻¹, respectively. This finding implies that the factors important in controlling v_{NH} of the RNH₂ and $XC_6H_4NH_2$ systems also differ, as mentioned for the $\delta^{15}N$ behaviour. Presumably, the effect of non-bonding interactions, which has been described for the v_{OH} value of ROH,⁴ is an important factor causing clear differences in the $\nu_{\rm NH}$ value of the RNH, system.

In conclusion, the empirical linear relationships found among the i.r. stretching frequency and the n.m.r. parameters of amino compounds and the substituent effects on $v_{\rm NH}$, $\delta^{15}N$, and ${}^{1}J_{{}^{1}N,{}^{1}H}$ in amino compounds were interpreted by the theoretical treatment using the CNDO/2 method. The information obtained in the present study should be useful for understanding the i.r. and n.m.r. behaviour found in analogous compounds.

Acknowledgement

We thank Drs. Y. Matsui, M. Yamakawa, and K. Ezumi of our laboratories for useful discussions.

References

- 1 (a) G. C. Levy and R. L. Lichter, 'Nitrogen-15 Nuclear Magnetic Resonance Spectroscopy,' Wiley-Interscience, New York, 1979; (b) G. J. Martin, M. L. Martin, and J.-P. Gouesnard, ⁴¹⁵N N.M.R. Spectroscopy,' Springer-Verlag, New York.
- 2 (a) R. O. Duthaler and J. D. Roberts, J. Am. Chem. Soc., 1978, 100, 3889; (b) R. L. Lichter and J. D. Roberts, *ibid.*, 1972, 94, 2495.
- 3 J. K. Crandall and M. A. Centeno, J. Org. Chem., 1979, 44, 1183.
- 4 M. Takasuka, J. Chem. Soc., Perkin Trans. 2, 1981, 1558.
- 5 P. J. Krueger and D. W. Smith, Can. J. Chem., 1967, 45, 1605.
- 6 J. H. van der Maas and E. T. G. Lutz, Spectrochim. Acta, 1974, 30A, 2005.
- 7 J. A. Pople and D. L. Beveridge, 'Approximate Molecular Orbital Theory,' McGraw-Hill, New York, 1970.
- 8 (a) M. Karplus and J. A. Pople, J. Chem. Phys., 1963, 38, 2803; (b) J. A. Pople, Mol. Phys., 1964, 7, 301.
- 9 C. Laurence and M. Berthelot, Spectrochim. Acta, 1978, 34A, 1127.
- 10 'Table of Interatomic Distances and Configuration in Molecules and Ions,' ed. L. E. Sutton, Chem. Soc., London, 1965.

- 11 G. Dellepiane and G. Zerbi, J. Chem. Phys., 1968, 48, 3573.
- 12 E. B. Wilson, Jr., J. C. Decius, and P. C. Cross, 'Molecular Vibrations,' McGraw-Hill, New York, 1955.
- 13 G. A. Segal, J. Chem. Phys., 1967, 47, 1876.
- 14 K. A. K. Ebraheem and G. A. Webb, Prog. Nucl. Magn. Reson. Spectrosc., 1977, 11, 149; Org. Magn. Reson., 1976, 8, 317.
- 15 J. C. Slater, Phys. Rev., 1930, 36, 57.
- 16 K. Watanabe, T. Nakayama, and J. Mottl, J. Quant. Spectrosc. Radiat. Transfer, 1962, 2, 369.
- 17 T. Koopmans, Physica, 1933, 1, 104.
- 18 K. A. K. Ebraheem and G. A. Webb, Org. Magn. Reson., 1977, 9, 248.
- 19 J. A. Pople, J. Chem. Phys., 1962, 37, 53, 60.
- 20 R. L. Ellis, G. Kuehlenz, and H. H. Jaffe, *Theor. Chem. Acta*, 1972, 26, 131.
- 21 J. Dorie, B. Mechin, and G. Martin, Org. Mag. Reson., 1979, 12, 229.
- 22 T. Axenrod, P. S. Pregosin, M. J. Wieder, E. D. Becker, R. B. Bradley, and G. W. A. Milne, *J. Am. Chem. Soc.*, 1971, 93, 6536.
- 23 P. J. Krueger, Can. J. Chem., 1962, 40, 2300.
- 24 M. Kato, T. Sugawara, K. Katoh, and H. Iwamura, *Bull. Chem. Soc. Jpn.*, 1979, **52**, 3475.
- 25 (a) H. M. McConnell, J. Chem. Phys., 1956, 24, 460; (b) G. E. Maciel, J. W. McIver, Jr., N. S. Ostlund, and J. A. Pople, J. Am. Chem. Soc., 1970, 92, 1; (c) C. Van Alsenoy, H. P. Figeys, and P. Geerlings, Theor. Chem. Acta, 1980, 55, 87; (d) R. E. Wasylishen, Can. J. Chem., 1976, 54, 834.
- 26 (a) Z. B. Maksić, Z. Meić, and M. Randić, J. Mol. Struct., 1972, 12, 482; (b) T. L. Brown and J. C. Puckeff, J. Chem. Phys., 1966, 44, 2238; (c) G. Binsch, J. B. Lambert, B. W. Roberts, and J. D. Roberts, J. Am. Chem. Soc., 1964, 86, 5564.

Received 2nd December 1983; Paper 3/2135